Pharmacologic ATM but not ATR kinase inhibition abrogates p21-dependent G1 arrest and promotes gastrointestinal syndrome after total body irradiation

نویسندگان

  • Frank P. Vendetti
  • Brian J. Leibowitz
  • Jennifer Barnes
  • Sandy Schamus
  • Brian F. Kiesel
  • Shira Abberbock
  • Thomas Conrads
  • David Andy Clump
  • Elaine Cadogan
  • Mark J. O’Connor
  • Jian Yu
  • Jan H. Beumer
  • Christopher J. Bakkenist
چکیده

We show that ATM kinase inhibition using AZ31 prior to 9 or 9.25 Gy total body irradiation (TBI) reduced median time to moribund in mice to 8 days. ATR kinase inhibition using AZD6738 prior to TBI did not reduce median time to moribund. The striking finding associated with ATM inhibition prior to TBI was increased crypt loss within the intestine epithelium. ATM inhibition reduced upregulation of p21, an inhibitor of cyclin-dependent kinases, and blocked G1 arrest after TBI thereby increasing the number of S phase cells in crypts in wild-type but not Cdkn1a(p21CIP/WAF1)-/- mice. In contrast, ATR inhibition increased upregulation of p21 after TBI. Thus, ATM activity is essential for p21-dependent arrest while ATR inhibition may potentiate arrest in crypt cells after TBI. Nevertheless, ATM inhibition reduced median time to moribund in Cdkn1a(p21CIP/WAF1)-/- mice after TBI. ATM inhibition also increased cell death in crypts at 4 h in Cdkn1a(p21CIP/WAF1)-/-, earlier than at 24 h in wild-type mice after TBI. In contrast, ATR inhibition decreased cell death in crypts in Cdkn1a(p21CIP/WAF1)-/- mice at 4 h after TBI. We conclude that ATM activity is essential for p21-dependent and p21-independent mechanisms that radioprotect intestinal crypts and that ATM inhibition promotes GI syndrome after TBI.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BRCA1-BARD1 complexes are required for p53Ser-15 phosphorylation and a G1/S arrest following ionizing radiation-induced DNA damage.

BRCA1 is a major player in the DNA damage response. This is evident from its loss, which causes cells to become sensitive to a wide variety of DNA damaging agents. The major BRCA1 binding partner, BARD1, is also implicated in the DNA damage response, and recent reports indicate that BRCA1 and BARD1 co-operate in this pathway. In this report, we utilized small interfering RNA to deplete BRCA1 an...

متن کامل

Sodium fluoride causes hepatocellular S-phase arrest by activating ATM-p53-p21 and ATR-Chk1-Cdc25A pathways in mice

In this study, experimental pathology, flow cytometry (FCM), quantitative real-time polymerase chain reaction (qRT-PCR), and western blot (WB) were used to evaluate the effects of sodium fluoride (NaF) on hepatocellular cell cycle progression in mice. A total of 240 ICR mice were divided equally into four groups; the experimental groups received 12, 24, or 48 mg/kg NaF intragastrically for 42 d...

متن کامل

Checkpoint Kinase ATR Phosphorylates Cdt2, a Substrate Receptor of CRL4 Ubiquitin Ligase, and Promotes the Degradation of Cdt1 following UV Irradiation

The DNA replication-licensing factor Cdt1 is present during the G1 phase of the cell cycle. When cells initiate S phase or are UV-irradiated, Cdt1 is recruited to chromatin-bound PCNA and ubiquitinated by CRL4(Cdt2) for degradation. In both situations, the substrate-recognizing subunit Cdt2 is detected as a highly phosphorylated form. Here, we show that both caffeine-sensitive kinase and MAP ki...

متن کامل

ATR and ATM differently regulate WRN to prevent DSBs at stalled replication forks and promote replication fork recovery.

Accurate response to replication arrest is crucial to preserve genome stability and requires both the ATR and ATM functions. The Werner syndrome protein (WRN) is implicated in the recovery of stalled replication forks, and although an ATR/ATM-dependent phosphorylation of WRN was observed after replication arrest, the function of such modifications during the response to perturbed replication is...

متن کامل

ATR kinase activation in G1 phase facilitates the repair of ionizing radiation-induced DNA damage

The kinase ATR is activated by RPA-coated single-stranded DNA generated at aberrant replicative structures and resected double strand breaks. While many hundred candidate ATR substrates have been identified, the essential role of ATR in the replicative stress response has impeded the study of ATR kinase-dependent signalling. Using recently developed selective drugs, we show that ATR inhibition ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017